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In a previous study, we demonstrated that transgenic Lofus plants producing opines (which are small amino
acid and sugar conjugates) specifically favor growth of opine-degrading rhizobacteria. The opine-induced bias
was repeated and demonstrated with another soil type and another plant species (Solanum nigrum). This
phenomenon is therefore independent of both soil type and plant species.

The use of microorganisms as biopesticides or plant growth
enhancers is an attractive alternative to the use of chemical
pesticides and fertilizers (3, 10, 12, 35, 37). However, introduc-
tion of plant-growth-promoting bacteria in open fields often
fails. This is attributed to limited survival of the inoculant
strain in the rhizosphere, where it faces competition from
resident microorganisms, a diverse community well adapted to
the biological and physicochemical properties of the plant-soil
interface (37). It is therefore crucial to develop methods to
extend the fitness and persistence of the inoculant microorgan-
isms, possibly by introducing a bias in the competition that
benefits the isolate inoculated (20). This bias may be generated
by addition to the soil, or release by the plant, of one or more
substrates utilizable only by the introduced strain. This ap-
proach has been successfully used to sustain growth of various
microbes in soil (1, 2, 5). Similarly, plants engineered to pro-
duce bacterial growth substrates have been shown to specifi-
cally select populations of microbes utilizing these substrates in
the rhizospheres of Lotus (8, 21) and tobacco plants (31). Most
often, these growth substrates have been opines (4), a family of
compounds derived from amino acids and/or sugars and spe-
cifically detected in the crown gall tumors and hairy root for-
mations induced by members of the genus Agrobacterium (4).

Bacterial populations are highly dependent upon soil type
(13, 14, 24, 23, 32) and plant exudates (7, 15, 17, 38). There-
fore, there is a risk that a selective microbial substrate strategy
might be successful for a single soil type or a single plant
species or cultivar. The work described here was aimed at
determining whether the impact of opine production on soil
bacteria is independent of the type of opines produced by the
plant, the origin of the soil, and the plant species producing the
opines. Such investigations are crucial to evaluate whether
opine-producing plants and biased rhizosphere strategies
could be used to engineer plant-microbe interactions under
various conditions.
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To address the questions above, plants of the legume Lotus
corniculatus cv. Rodéo and Solanum nigrum plants were engi-
neered via Agrobacterium rhizogenes transformation to produce
opines, as described by Petit et al. (26). The transformed plants
produced the opines mannopine, mannopine and nopaline, or
mannopine and octopine; the latter opine has not been tested
previously (Fig. 1) (for a review, see reference 4). Transformed
control plants harboring the pRi oncogenes but producing no
opines (ONC plants) were also generated by using the same
procedure (26). Plants were increased by propagating cuttings
for 3 to 4 weeks on Murashige-Skoog medium (catalog no. M
11225; Sigma France, L'Isle d’Abeau, France) supplemented
with sucrose (20 g/liter) and 0.5X Morel-Wetmore vitamin
mixture (18) at 23°C under long-day conditions (16 h of light
per day) to a stage that allowed transfer to a greenhouse (6 to
10 cm long for Lotus plants, four to six leaves for S. nigrum).
Once transferred, plants were grown for up to 18 weeks under
long-day conditions (16 h of light per day; 24°C during the day
and 17°C at night) in a nonsterilized soil from La-Cote-Saint-
André (a loamy-sandy soil from Isére, France), which differed
from the soil from La Mérantaise (a loamy, clay-rich soil from
Essonne, France) used in previous studies (21, 22). For each
experiment, three microcosms, each containing three or four
plants of the same line (wild-type [WT], ONC, or opine-pro-
ducing plants), were set up.

The bacterial populations of the rhizospheres were recov-
ered and analyzed as indicated by Oger et al. (21, 22). Total
cultivable bacterial populations and the fluorescent Pseudomo-
nas populations were counted on modified Luria-Bertani me-
dium (which contained 5 g of NaCl per liter instead of 10
g/liter) at 28°C and on King’s B medium (11) at 25°C, respec-
tively. Fluorescence of colonies was assessed under UV light at
365 nm. Both media were supplemented with cycloheximide
(250 mg/liter). The densities of cultivable organisms that uti-
lized opines (mannopine, nopaline, and octopine) were evalu-
ated by inoculating 50 wl of AT minimal medium (25) supple-
mented with the appropriate opine(s) (5 mM each) and
cycloheximide (250 mg/liter) with serial dilutions of the bacte-
rial suspensions obtained from the plant rhizospheres as indi-
cated above and were deduced from the value of the last active
dilution that induced disappearance of opines in each case.
This was assessed after 7 days of incubation at 28°C by high-
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FIG. 1. Structures of opines. Octopine and nopaline are arginine and keto acid derivatives. Mannopine results from reductive condensation of

glutamine and glucose (4).

voltage paper electrophoresis at pH 1.9 (4). The values pre-
sented below resulted from three independent experiments
(see above), with all enumerations performed in triplicate. An
analysis of variance and a Student ¢ test were performed on all
data collected. Values were considered significantly different at
a P of 0.05.

Opine-induced bias is independent of both the opine type
and the soil type. The results shown in Table 1, obtained 10
weeks after transfer of the plants to the greenhouse, indicate
that the densities of the total cultivable bacteria isolated from
the roots of both WT plants and opine-producing plants cul-
tured in La-Cote-Saint-André soil did not differ significantly. A
similar conclusion was drawn for the fluorescent Pseudomona-
ceae isolated from the roots of both WT plants and opine-
producing plants. However, the densities of mannopine, nopa-
line, and octopine utilizers were 300 to 1,000 times higher in
the rhizospheres of the plants producing the opines, including
the previously untested compound octopine, than in the rhi-
zospheres of the WT plants. In addition, octopine utilizers
were also significantly more abundant in the rhizospheres of
Lotus plants producing nopaline than in the rhizospheres of
WT plants and plants producing mannopine (Table 1). Al-
though not investigated, this cross-selection could be attrib-
uted to the very similar structures of the opines nopaline and
octopine (Fig. 1) (for a review, see reference 4), which could
therefore be degraded by the same single catabolic system in
bacteria. In agreement with this hypothesis, related proteins
encoded by related genes in Agrobacterium are involved in
nopaline and octopine degradation (40, 41). In addition, pro-

teins involved in nopaline catabolism can also use octopine as
a substrate (41).

The bacterial populations colonizing the root systems of WT
Lotus plants and of transformed Lotus plants harboring the
oncogenes but devoid of genes encoding opine biosynthesis
(ONC plants) were examined. The densities of total cultivable
bacteria were identical whatever the plant of origin (WT and
ONC plants) (data not shown). Similar results were obtained
upon comparison of the densities of fluorescent Pseudomonas
and the densities of opine utilizers. Consequently, the growth
stimulation of opine-degrading bacteria observed around the
root systems of opine-producing plants is related to expression
of the opine biosynthesis genes and not to the transformed
status of the plants or the presence of the pRi transferred
DNA (T-DNA) oncogenes. Overall, our results indicate that
the opine-dependent bias induced by transgenic, opine-pro-
ducing plants also occurred with octopine-producing plants
and was not specific for the soil from La Mérantaise that we
used in earlier studies (21, 22). This opine-induced bias is
therefore not restricted to one soil type.

Opine bias is independent of the plant species. In the second
part of this study, we investigated whether the marked opine
bias induced by the Lotus plants was specific for this plant
species. We repeated the above experiments using nightshade
(S. nigrum) plants, which are taxonomically unrelated to the
genus Lotus, engineered to produce opines (see above). These
plants were grown and transferred to the greenhouse in the
La-Cote-Saint-André soil, as indicated above, and microbes

TABLE 1. Enumeration of bacterial populations from the rhizospheres of opine-producing L. corniculatus
and S. nigrum in La-Cote-Saint-André soil

Population size®

L. corniculatus

S. nigrum

Bacterial group
Plants producing

Plants producing Plants producing

Plants producing Plants producing

WT plants . mannopine and  mannopine and WT plants mannopine and  mannopine and

mannopine nopaline octopine nopaline octopine
Total cultivable 831 = 0.06 A 828+0.08A 828=001A 831*0.06A 814=0.09A 806=0.03A 8.14=0.03A
Fluorescent Pseudomonaceae 5.35 =0.10 A 534 *=0.11A 535*0.13A 534*+0.06A 524+0.08A 521 =*014A 540*=0.10A
Mannopine utilizing 387 *x0.01A 669*016B 688*=0.11B 684 *008B 3.72*x0.19A 524*+010B 653=0.01C
Nopaline utilizing 358 £0.14A 407x016B 658*+0.14C 438x007B 3.73*+0.10A 491+027B 5.61=*021C
Octopine utilizing 351 £029A 416*£036A 510x0.17B 6.09£021C 388 *=0.07A 495+030B 6.12=x026C

“ The values are the logarithms of the average bacterial concentrations from triplicate samples *+ standard deviations.
® For each bacterial group, different letters after values indicate that the values are significantly different (P < 0.05).
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FIG. 2. Isolation over time of bacterial populations in the rhizospheres of WT S. nigrum (WT), S. nigrum producing mannopine and nopaline
(MN), and S. nigrum producing mannopine and octopine (MO). Data points indicate average bacterial concentrations from triplicate samples, and
error bars indicate standard deviations. (A) Total cultivable bacteria; (B) fluorescent Pseudomonas; (C) octopine-utilizing bacteria; (D) manno-

pine-utilizing bacteria.

associated with their root systems were analyzed as described
above for the Lotus plants.

The results (Table 1) indicate that the densities of total
cultivable bacteria isolated from the rhizospheres of the S.
nigrum plants producing opines were identical to the densities
of total cultivable bacteria isolated from the rhizospheres of
the WT plants. A similar observation was made for the fluo-
rescent Pseudomonaceae component of the microflora. How-
ever, as observed with the Lotus plants, the concentrations of
mannopine-, nopaline-, and octopine-utilizing bacteria were 30
to ca. 1,000 times higher in the rhizospheres of opine-produc-
ing Solanum plants than in the rhizospheres of WT plants. In
addition, octopine utilizers were also significantly more abun-
dant in the rhizospheres of S. nigrum plants producing nopa-
line than in the rhizospheres of WT plants (Table 1). A com-
parison of the values obtained for ONC and WT plants (data
not shown) suggested that the elevated densities of opine-
degrading bacteria in the rhizospheres of opine-producing S.
nigrum plants resulted from expression of opine biosynthesis
genes and not from the transformed status of the plants. Ad-
ditional measurements were obtained at 10, 14, and 18 weeks.

The results of this series of experiments clearly indicated that
the population density of total cultivable bacteria and the pop-
ulation density of the fluorescent Pseudomonaceae component
of the rhizosphere were stable over the observation time (Fig.
2A and B), from 6 to 18 weeks following installation of the
plants in microcosms. Furthermore, the opine-induced bias
appeared to be consistently detected over time under our ex-
perimental conditions (Fig. 2C and D). Similar results have
been obtained using transgenic Lotus plants producing opines,
albeit only after 6, 10, and 14 weeks as the experiment was
discontinued after 14 weeks (data not shown). This result is of
interest because it has been shown previously that the micro-
bial community selected by a plant varies according to the
developmental stage of the plant (6, 16, 27), a feature that also
relates to legume species (9). The apparent stability of the
opine-induced bias suggests that the compositions of the root
exudates of the Lotus and S. nigrum plants used in this study
remained steady while the experiment lasted.

The two soil types used in our studies had different physical
and chemical characteristics and originated from different geo-
graphical regions. Therefore, the microflora inhabiting these
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two soils were most likely different (14, 29). As a consequence,
our results obtained with the loamy soil from La-Codte-Saint-
André demonstrated that the opine-induced bias generated by
the opine-producing plants was not specific for a single micro-
flora inhabiting the clay-rich soil from La Mérantaise, which
was used previously (21, 22). This conclusion is supported by
our results obtained with transgenic, opine-producing night-
shade (S. nigrum) plants. Indeed, it is reasonable to assume
that the microbial community inhabiting the root systems of
the Lotus plants differed from that inhabiting the root systems
of S. nigrum plants because the microbial communities colo-
nizing plant roots are determined by the plant genus, species,
or cultivar (3, 7, 15, 17, 28, 33, 38).

To summarize, we have shown that the effects of opine
production by plants on the soil and root microflora are inde-
pendent of the specific opine exuded. The data also suggest
that the effect may be long term since this microbial association
remained constant over the 18 weeks of the observation pe-
riod. Furthermore, there are indications that these effects were
also independent of plant species and soil type, but since only
two different soils and two plant species were used, additional
studies on these engineered associations with transformed
plants are needed before definitive conclusions can be reached.
These findings underline how strong the trophic perturbation
brought to the rhizosphere via opine production might be. This
may be attributed to the fact that opines are excellent sub-
strates for various soil microorganisms outside the genus
Agrobacterium (19, 36). Additionally, opines are produced at
high concentrations by transgenic plants intracellularly and
under hydroponic or in vitro growth conditions (8, 30, 34), and
they are readily excreted. Overall, our data are in agreement
with those published earlier by us and other workers and ob-
tained in vitro and under gnotobiotic conditions (8, 31) at the
leaf surface (39) or in the rhizosphere (21, 22). It is noteworthy
that the stimulation ratio (ratio of the population density of
opine utilizers at the surface of opine-producing plants to the
population density of opine utilizers at the surface of nonpro-
ducing plants) was always much higher in studies performed
with nonsterile soil, for reasons that remain to be explained.
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